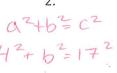
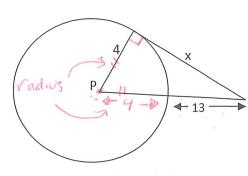

10-5 Tangents


If a line is tangent to a circle, then it is <u>per pendiculer</u> to the circle's radius.


Find x. Assume segments that appear tangent are tangent.

1.

* Rectangle opposite sides 3.

. H

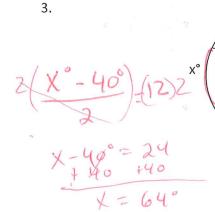
10-6 Secants, Tangents, and Angle Measures

Rules:

- Intersection is inside the circle Sum the intercepted arcs and divide by 2
- Intersection is on the circle Find the intercepted arcs and divide by $\overline{\mathcal{Q}}$
- Intersect outside the circle Subtract the intercepted arcs and divide by 2

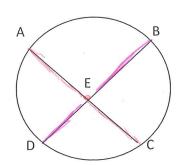
40°

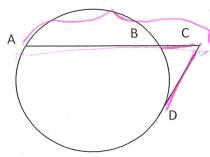
2x + 8


mc1=B1

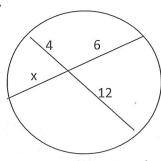
2.

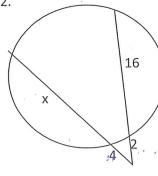
106° 2160


m21=1090

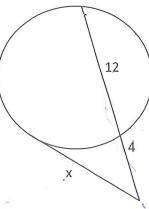

X-40 = 12 X=640

$$\frac{\dot{X}-40}{2}=12$$


10-7 Special Segments in a circle Write an equation representing the segment length relationships.

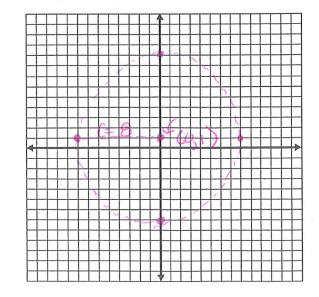


Relationship: $AE \cdot EC = BE \cdot ED$ Relationship: $CB \cdot CA = CD \cdot CE$ Relationship: $CB \cdot CA = CD^2$


1.

2.

3.


4.12= 6.X For #1-3 above, find x. $8 = 6 \times 8 = 4$

10-8 Equations of circles

The standard equation for a circle is ()

- Find the equation for a circle with diameter 8 and center (-3, 5) $(\chi + 3)^2 + (\chi 5)^2 = 1$
- Find the radius and center for a circle with equation $(x + 1)^2 + (y 2)^2 = 49$

3. Graph the circle whose equation is $x^2 + (y-1)^2 = 64$ (6) (1) (7 = 8)

