Geometry - 2.2 - Logic

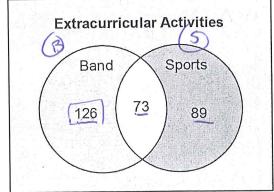
- A <u>Statement</u> is any sentence that is either <u>True</u> or <u>False</u>, but not both. The truth or falsity of a statement is called its Fruth Value.
- Statements are often represented with the letters $\underline{\varphi}$ and $\underline{\underline{q}}$.
- The ______ \(\rho \alpha \) of a statement has the opposite meaning as well as the opposite truth value. The negation of a statement p is <u>not</u> ρ , or, in symbols, $\sim \rho$.
- Two or more statements can be joined together to form a compound statement.
- A <u>Conjunction</u> is a compound statement formed by joining two or more statements with the word _and . The conjuction of two statements p and q is p and q, or, in symbols, $p \land q$
- A <u>Qisjonation</u> is a compound statement formed by joining two statements p and q is p or, in symbols, $p \vee q$.
- A conjunction is only true when ______ of its statements are true. Ex 1 - Use the following statements to write a compound statement for each conjunction. Then find its truth value.

p: A heptagon has 7 sides. q: -18 + (-17) = 35 \rightarrow (-35)

T r. Ottawa is the capital of Canada.

a) p and q = a heptagon has 7 sides, and -18 + (-17) = 35 [Falso] -> Both must be true with conjunctions

b) r/p = Ottawa is the capital OF Canada, and a heptagon (randp) has 7 sides.


(1) (True) -> Both are true, so it is a conjunction

(PA~q) = a heptagon has 7 sides, and -18+ (-17) 7 35

d)~r \ p = ottawa is Not the capital of carada, and (not r and p) a heptagon has 7 sides.

F T \ False

3
Ex 2 - Use the following statements to write a compound statement for each disjunction. Then find its truth value.
p: -19 ≥ 18 - 19 ≤ 18 p: An equilateral triangle has 3 congruent sides. p: Acapulco is the capital of Mexico. p : Mexico City
a) porq = -19318 OR an equilateral triangle has 3 congruent
a) p or q = -19 = 18 OR an equilateral triangle has 3 congruent (PV9) Free only one Statement needs to be true in disjunctions
b) pVr = -19 = 18, or Acapulco is the Capital of Mexico.
(POT () Folso > No statement is true, disjunction is false
d) ~p V ~r /= -19 7 18 or Acapeted is not the capital
d)~pV~r/=-19 \$ 18 or Acapulco is not the capital of (not p or not r) (T) (T) (T)
 Conjunctions and disjunctions can both be illustrated with Ven∩ diagrams. For two sets A and B, a conjunction is the

of its statements are true.

b) How many students play in band or on a sports team?

a) How many students play both in

band and on a sports team? $(\beta \cap 5) = 73$ students

• A disjunction is true when anu

c) How many students play in band but not on a sports team?

• A Truth tables is a convenient way to organize truth values of statements. Ex 3 - Construct a truth table for each compound statement. a) ~p \/ q b) ~p ∧ ~q Step ()-> c) (p/q)/r a ® R # o F

(PUQDAF