Study Guide and Intervention

Logic

Determine Truth Values A statement is any sentence that is either true or false. The truth or falsity of a statement is its truth value. A statement can be represented by using a letter. For example,

Statement p: Chicago is a city in Illinois. The truth value of statement p is true.

Several statements can be joined in a **compound statement**.

Statement p and statement q joined by the word and is a conjunction .	Statement <i>p</i> and statement <i>q</i> joined by the word <i>or</i> is a disjunction .	Negation: <i>not p</i> is the negation of the statement <i>p</i> .
Symbols: $p \land q$ (Read: p and q)	Symbols: $p \lor q$ (Read: $p \text{ or } q$)	Symbols: ∼p (Read: not p)
The conjunction $p \wedge q$ is true only when both p and q are true.	The disjunction $p \lor q$ is true if p is true, if q is true, or if both are true.	The statements p and $\sim p$ have opposite truth values.

Example 1 Write a compound statement for each conjunction. Then find its truth value.

p: An elephant is a mammal.

q: A square has four right angles.

a. $p \wedge q$

Join the statements with and: An elephant is a mammal and a square has four right angles. Both parts of the statement are true so the compound statement is true.

b. $\sim p \wedge q$

 $\sim p$ is the statement "An elephant is not a mammal." Join $\sim p$ and q with the word and: An elephant is not a mammal and a square has four right angles. The first part of the compound statement, $\sim p$, is false. Therefore the compound statement is false.

Example 2 Write a compound statement for each disjunction. Then find its truth value.

p: A diameter of a circle is twice the radius. q: A rectangle has four equal sides.

a. $p \vee q$

Join the statements p and q with the word or: A diameter of a circle is twice the radius or a rectangle has four equal sides. The first part of the compound statement, p, is true, so the compound statement is true.

b. $\sim p \vee q$

Join $\sim p$ and q with the word or: A diameter of a circle is not twice the radius or a rectangle has four equal sides. Neither part of the disjunction is true, so the compound statement is false.

Exercises

Write a compound statement for each conjunction and disjunction. Then find its truth value.

p: 10 + 8 = 18

q: September has 30 days. *r*: A rectangle has four sides.

1. p and q

2. p or r

3. q or r

4. q and $\sim r$

2-2 Study Guide and Intervention (continued) Logic

Truth Tables One way to organize the truth values of statements is in a **truth table**. The truth tables for negation, conjunction, and disjunction are shown at the right.

Neg	ation
p	~p
Т	F
F	Т

C	Conjunction				
р	q	$p \wedge q$			
Т	Т	Т			
Т	F	F			
F	Т	F			
F	F	F			

D	Disjunction				
p	q	$p \lor q$			
Т	Т	Т			
Т	F	Т			
F	Т	T			
F	F	F			

Construct a truth table for the compound statement q or r. Use the disjunction table.

q or r	
Т	
T	

Example 2 Construct a truth table for the compound statement p and (q or r).

Use the disjunction table for (q or r). Then use the conjunction table for p and (q or r).

p	q	r	q or r	p and $(q or r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	T	F
F	Т	F	Т	F
F	F	Т	Т	F
F	F	F	F	F

Exercises

Contruct a truth table for each compound statement.

2.
$$\sim p \vee q$$

3.
$$q \wedge \sim r$$

4.
$$\sim p \land \sim r$$

5.
$$(p \text{ and } r) \text{ or } q$$

2-2

Skills Practice

Logic

Use the following statements to write a compound statement for each conjunction and disjunction. Then find its truth value.

$$p: -3 - 2 = -5$$

q: Vertical angles are congruent.

r: 2 + 8 > 10

s: The sum of the measures of complementary angles is 90°.

1. p and q

2.
$$p \wedge r$$

4.
$$r \lor s$$

5.
$$p \wedge \sim q$$

6.
$$q \lor \sim r$$

Copy and complete each truth table.

7.	p	q	~p	~p ∧ q	~(~p ∧ q)
	Т	Т			
	Т	F			7.
	F	Т			
T	F	F			

•	p	q	~q	<i>p</i> ∨ ~ <i>q</i>
	Т	Т	F	
	Т	F	Т	
	F	Т	F	
	F	F	Т	

Construct a truth table for each compound statement.

9.
$$\sim q \wedge r$$

10.
$$\sim p \vee \sim r$$

2-2 Practice

Logic

Use the following statements to write a compound statement for each conjunction and disjunction. Then find its truth value.

p: 60 seconds = 1 minute

q: Congruent supplementary angles each have a measure of 90.

$$r: -12 + 11 < -1$$

1.
$$p \wedge q$$

2.
$$q \vee r$$

3.
$$\sim p \vee q$$

4.
$$\sim p \wedge \sim r$$

Copy and complete each truth table.

	p	q	~ p	~q	~p \/ ~q
	Т	Т			
	Т	F			
	F	Т			
Ī	F	F			

p	q	~p	~p \(\varphi \)	$p \wedge (\sim p \vee q)$
Т	Т			
Т	F			
F	Т			
F	F			

Construct a truth table for each compound statement.

7.
$$q \lor (p \land \neg q)$$

8.
$$\sim q \wedge (\sim p \vee q)$$

SCHOOL For Exercises 9 and 10, use the following information.

The Venn diagram shows the number of students in the band who work after school or on the weekends.

- 9. How many students work after school and on weekends?
- 10. How many students work after school or on weekends?

