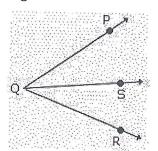
Name: Kee

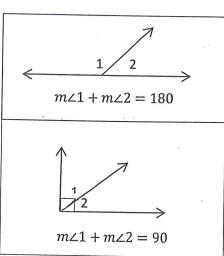

2-8 Proving Angle Relationships Notes

Objectives:

- Students will write proofs involving supplementary and complementary angles
- Students will write proofs involving congruent and right angles.

Postulate 2.11: Angle Addition Postulate:

If S is in the interior of $\angle PQR$, then $m\angle PQS + m\angle SQR = m\angle PQR$.



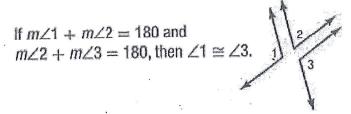
Example 1: Using the Angle Addition Postulate:

If $m \angle ABC = 103$ find the value of x. Then find $m \angle ABD$ and $m \angle DBC$

Supplementary and Complementary Angles

- Theorem 2.3: If two angles form a Linear Pair, then they are Supplementary angles.
- Theorem 2.4: If the non-common sides of two adjacent angles form a fight angle, then the angles are complimentary angles.

Example 2: Using Supplementary Angles


If $\angle 1$ and $\angle 2$ form a linear pair, and $m \angle 1 = 4x - 5$ and the $m \angle 2 = 14x + 5$, find x and the measurements of $\angle 1$ and ۷2. ml1 +ml2 = 180° ml1 = 4x-5

$$= 4x-5 \qquad \text{MLZ} = 14x+5
= 4(10)-5 \qquad = 14(10)+5
= 40x-5 \qquad = 146 +5
= 45
= 4x-5 1 2$$

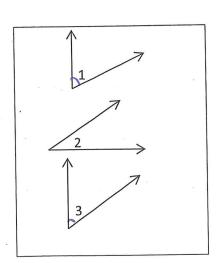
Theorem 2.5	Angle Congruence
Reflexive Property	Z1≅Z1
Symmetric Property	If $\angle 1 \cong \angle 2$, $\angle 2 \cong \angle 1$
Transitive Property	If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$

Theorem 2.6: Angles supplementary to the same angle or to congruent angles are congruent.

If
$$m \angle 1 + m \angle 2 = 180$$
, and $m \angle 2 + m \angle 3 = 180$, then $\angle 1 \cong \angle 3$.

Example 3: Proof of Theorem 2.6

Given: $\angle 1$ and $\angle 2$ are supplementary

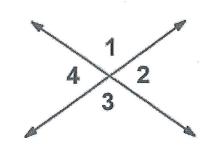

 $\angle 2$ and $\angle 3$ are supplementary

Prove: $\angle 1 \cong \angle 3$

Statements	Reasons	
 ∠1 and ∠2 are supplementary ∠2 and ∠3 are supplementary m∠1 + m∠2 = 180 m∠2 + m∠3 = 180 	1. Given 2. Definition of supplementary L'S	
3. m/1+m/2=m/2+m/3 -m/2 -m/2	3. Substitution.	
4. $m \angle 1 = m \angle 3$ 5. $\angle 1 \cong \angle 3$	4. Subtraction 5. Definition of $= 2$'s	

Theorem 2.7: Angles complementary to the same angle or to congruent angles are congruent.

If
$$m \angle 1 + m \angle 2 = 90$$
, and $m \angle 2 + m \angle 3 = 90$, then $4 \cong 43$.


Theorem 2.8: If two angles are vertical angles, then they are congruent (\cong)

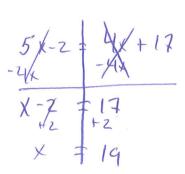
Example 4: Prove Vertical Angles are \cong

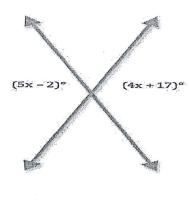
Given: $\angle 1$ and $\angle 2$ form a linear pair.

 $\angle 2$ and $\angle 3$ form a linear pair.

Prove: $\angle 1 \cong \angle 3$

Statements	Reasons
 ∠1 and ∠2 form a linear pair ∠2 and ∠3 form a linear pair 	1. Given
2. ∠1 and ∠2 are supplementary∠2 and ∠3 are supplementary	2. Supplement Theorem
3. ∠1 ≅ ∠3	3. L'S supplement to some L


 $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$



 $\sqrt{5(19)-2:4(19)+17}$ 95-2=76+1793=93

Example 5: Using Vertical Angles

Find the value of *x* using vertical angles.

Ri	ight 1 Theor	rems $X-Z=17$ X=19 X=19
	Theorem 2.9:	Perpendicular lines intersect to four <u>Cight L'5</u> .
(4)	Theorem 2.10:	All right angles are congruent.
	Theorem 2.11:	Perpendicular lines form congruent adjacent angles.
	Theorem 2.12:	If two angles are congruent and supplementary, then each angle is a <u>right</u> .
	Theorem 2.13:	If two congruent angles form a linear pair, then they are roght 25