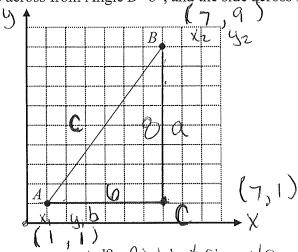
Geometry 1-3 Notes and Example	S
Distance and Midpoints	

Name: _		
Date:	Hour:	

THE DISTANCE BETWEEN 2 POINTS:

***Distance on a Number Line


$$Distance = |b-a| or |a-b|$$

Example: Find the distance between P and Q above.

$$|4+2|=|6|=6$$

***Distance on the Coordinate Plane

Now suppose you were trying to find the distance between points A and B shown on the coordinate plane below. By drawing a horizontal line to the right from point A and a vertical line down from point B you can create a triangle. Call the third point C. Now name the side across from Angle A "a", the side across from Angle B "b", and the side across from Angle C, "c".

- What type of triangle have you created? Right triangle
- What is AC (the length of side b)? (0.1101 ± 5)
- What is BC (the length of side a)? Bunits
- How can you calculate AB (the length of side c), which is the distance you were trying to find from the start? Use the Pythagorean Theorem: $a^2 + b^2 = c^2$...(c is the longest side). $a^2 + b^2 = c^2$ $a^2 + b^2 = c^2$

$$a^{2}+b^{2}=c^{2}$$

The Distance Formula can be used to find the distance between two points on a coordinate plane without graphing:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(7 - 1)^2 + (9 - 1)^2}$$

d=10

Find the distance between
$$Q = \sqrt{6^2 + 8^2}$$

A and B above by using the formula.