Angle Measure

For Exercises 1-12, use the figure at the right.

Name the vertex of each angle.

Name the sides of each angle.

$$\begin{array}{ccc}
6.25 & \longrightarrow \\
TS & TW
\end{array}$$

Write another name for each angle.

11.
$$\angle WTS$$

Measure each angle and classify it as right, acute, or obtuse.

15

15. ∠*QMN*

16.
$$\angle QMO$$

ALGEBRA In the figure, \overrightarrow{BA} and \overrightarrow{BC} are opposite rays, \overrightarrow{BD} bisects $\angle EBC$, and \overrightarrow{BF} bisects $\angle ABE$.

17. If $m \angle EBD = 4x + 16$ and $m \angle DBC = 6x + 4$, find $m \angle EBD$. $U \times F \cup \psi$

18. If $m \angle ABF = 7x - 8$ and $m \angle EBF = 5x + 10$, find $m \angle EBF$. SX+10

© Glencoe/McGraw-Hill

5(9)+10

21

Glencoe Geometry

Practice

Angle Measure

For Exercises 1-10, use the figure at the right.

Name the vertex of each angle.

Name the sides of each angle.

Write another name for each angle.

$$\begin{array}{cccc}
5. & \angle 6 & & \\
\hline
NM & & NP \\
7. & \angle MOP & & \\
\hline
MO & & OP
\end{array}$$

Measure each angle and classify it as right, acute, or obtuse.

ALGEBRA In the figure, \overrightarrow{CB} and \overrightarrow{CD} are opposite rays, \overrightarrow{CE} bisects $\angle DCF$, and \overrightarrow{CG} bisects $\angle FCB$.

15. If
$$m \angle DCE = 4x + 15$$
 and $m \angle ECF = 6x - 5$, find $m \angle DCE$.

16. If
$$m \angle FCG = 9x + 3$$
 and $m \angle GCB = 13x - 9$, find $m \angle GCB$.

17. TRAFFIC SIGNS The diagram shows a sign used to warn drivers of a school zone or crossing. Measure and classify each numbered angle.

1-4

Skills Practice

Angle Measure

For Exercises 1-12, use the figure at the right.

Name the vertex of each angle.

2. ∠1

4. ∠5

Name the sides of each angle.

6. ∠5

8. ∠1

Write another name for each angle.

10. ∠4

11.
$$\angle WTS$$

12. ∠2

14. ∠*OMN*

16. ∠*QMO*

ALGEBRA In the figure, \overrightarrow{BA} and \overrightarrow{BC} are opposite rays, \overrightarrow{BD} bisects $\angle EBC$, and \overrightarrow{BF} bisects $\angle ABE$.

17. If
$$m \angle EBD = 4x + 16$$
 and $m \angle DBC = 6x + 4$, find $m \angle EBD$.

18. If
$$m \angle ABF = 7x - 8$$
 and $m \angle EBF = 5x + 10$, find $m \angle EBF$.

1-4

Practice

Angle Measure

For Exercises 1-10, use the figure at the right.

Name the vertex of each angle.

1. ∠5

2. ∠3

3. ∠8

4. ∠*NMP*

Name the sides of each angle.

5. ∠6

6. ∠2

7. ∠*MOP*

8. ∠*OMN*

Write another name for each angle.

9. ∠*QPR*

10. ∠1

Measure each angle and classify it as *right*, *acute*, or *obtuse*.

11. $\angle UZW$

12. $\angle YZW$

13. ∠*TZW*

14. $\angle UZT$

ALGEBRA In the figure, \overrightarrow{CB} and \overrightarrow{CD} are opposite rays, \overrightarrow{CE} bisects $\angle DCF$, and \overrightarrow{CG} bisects $\angle FCB$.

15. If
$$m \angle DCE = 4x + 15$$
 and $m \angle ECF = 6x - 5$, find $m \angle DCE$.

16. If
$$m \angle FCG = 9x + 3$$
 and $m \angle GCB = 13x - 9$, find $m \angle GCB$.

