THE MIDPOINT BETWEEN 2 POINTS:

***Midpoint on a Number Line

$$Midpoint = \frac{a+b}{2} \qquad (-2) + 4 \qquad \frac{2}{2}$$

Example: Find the *number coordinate* of the midpoint of PQ above.

***Midpoint on the Coordinate Plane

The midpoint formula can be used to find the coordinates of the point that is exactly between two other points on the coordinate plane:

$$Midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

NOTE: MidPOINT is a POINT—an ordered pair!!! Distance is a LENGTH—a number!!!

Examples

1. Find the distance between the points (-1, 3) and (-5, -7). Round to the nearest tenth. $\sqrt{(-5, -1)^2 + (-7 - 3)^2}$

$$d = \sqrt{(-4)^2 + (-10)^2} = \sqrt{16 + 100} = \sqrt{116} = 10.70 10.8$$

2. Find the midpoint of the line segment whose endpoints are
$$(-7, 3)$$
 and $(-5, 8)$.

$$\begin{pmatrix}
-7 + -5 \\
2
\end{pmatrix}, 3 + 8$$

$$\begin{pmatrix}
-12 \\
2
\end{pmatrix}, 2$$

$$\begin{pmatrix}
-12 \\
2
\end{pmatrix}, 2$$

$$\begin{pmatrix}
-6, 5 & 5
\end{pmatrix}$$

Remember - the distance formula will give you a single number answer. The midpoint formula gives you TWO answers, one for the x-coordinate and one for the y-coordinate.

Example: Find AB if B is the midpoint of \overline{AC}

$$\frac{1}{4x} - 5 = 11 + \frac{1}{4x}$$

$$\frac{1}{4x} - 5 = 11 + \frac{1}{4x}$$

$$\frac{1}{4x} - 5 = 11 + \frac{1}{4x}$$

$$X = 8$$
 $4x - 5$
 $4(8) - 5$
 $32 - 5$

Segment Bisector: Something that intersects a segment at its Mid point

Example: \overline{AC} is bisecting \overline{XY} . Find x.

