	,			
Name:_	hou_	_)		
Date:	1		_Hour:	

Radical expressions contain a radical.

radical
$$\sqrt{2} + 3$$

The radicand is the quantity or expression under the radical sign.

radicand

$$\sqrt{x=6}$$

radicand
$$\sqrt{x-6}$$

$$\sqrt{\alpha} = 0$$

$$\sqrt{1} = 1$$

$$\sqrt{4} = 2$$

$$\sqrt{g} = 2$$

$$\sqrt{16} = 4$$

$$\sqrt{0} = 0$$
 $\sqrt{1} = 1$ $\sqrt{4} = 2$ $\sqrt{9} = 3$ $\sqrt{16} = 4$ $\sqrt{25} = 5$

$$\sqrt{36} = ($$

$$\sqrt{4.9} = 7$$

$$\sqrt{64} = 9$$

$$\sqrt{81} = 9$$

$$\sqrt{100} = 0$$

$$\sqrt{36} = 6$$
 $\sqrt{49} = 7$ $\sqrt{64} = 8$ $\sqrt{81} = 9$ $\sqrt{100} = 6$ $\sqrt{121} = 11$

The numbers inside the radicals in the preceding two rows are examples of ladical expression because...

Examples: Simplify the Radical Expression by Removing Perfect-Square Factors

- a) $\sqrt{27}$

- d) $2\sqrt{32}$
- 2.16.12

- b) $4\sqrt{200}$
- 4. 125.18
- 4.5.4.12 20-2.12 e) √75
 - - V25.13

c) $2\sqrt{45}$ 2.15.19

Rationalizing a Denominator

Multiply top and bottom by the radical

a)
$$\frac{3}{2\sqrt{2}} \cdot \sqrt{\frac{1}{2}} = \frac{3\sqrt{2}}{2\sqrt{4}}$$

d)
$$\frac{10}{\sqrt{3}}$$

b)
$$\frac{4}{\sqrt{5}} \circ \frac{\sqrt{5}}{\sqrt{5}} = \frac{4\sqrt{5}}{\sqrt{25}}$$

e)
$$\frac{5}{4\sqrt{2}}$$

f)
$$\frac{\sqrt{3}}{\sqrt{2}}$$

Multiplying and Squaring Radicals

Multiply "numbers with numbers" and "radicals with radicals". Then simplify further if needed.

b)
$$\sqrt{10} \cdot 4\sqrt{3}$$

c)
$$6\sqrt{6}$$
 $4\sqrt{2}$

(Simplify the following--you could rewrite these first, but you don't always **need** to....)

e)
$$(2\sqrt{5})^2$$

f)
$$10(\sqrt{3})^2$$

g)
$$(\sqrt{811,367})^2$$

Simplifying Radicals by Dividing

Divide radicals with radicals and numbers with numbers (if they are divisible). Then simplify further if needed.

a)
$$\frac{\sqrt{120}}{\sqrt{6}} = \sqrt{\frac{120}{16}} = \sqrt{\frac{120$$

b)
$$\frac{\sqrt{200}}{\sqrt{2}} = \sqrt{\frac{200}{2}}$$

c)
$$\frac{10\sqrt{6}}{5\sqrt{2}} = \frac{10}{5}$$

Summary: A radical expression is in simplest radical form when these statements are true:

- The radicand has no perfect-square factors other than 1.
- The denominator of a fraction has no radical.
- Fractions are reduced.
- Like terms have been added and/or subtracted.
- Simplifying is NOT rounding our answer with a decimal! That is called approximating. Simplifying involves an EXACT answer. Approximating involves a ROUNDED answer.

Example: Give the last answer (c) again, but rounded to the nearest tenth.

Geometry Example: write the ratio of

2 $2\sqrt{3}$ a) the shortest leg to the *hypotenuse*

$$\frac{2}{4} = \frac{1}{2}$$

b) the hypotenuse to the longest leg.

4 2/3	25	· [5]	= 2/3	=:21/3
6110	10		4 -1	0

Be sure to simplify any fractions or radicals! ©